Greenhouse gas performance of biochemical biodiesel production from straw: soil organic carbon changes and time-dependent climate impact

نویسندگان

  • Hanna Karlsson
  • Serina Ahlgren
  • Mats Sandgren
  • Volkmar Passoth
  • Ola Wallberg
  • Per-Anders Hansson
چکیده

BACKGROUND Use of bio-based diesel is increasing in Europe. It is currently produced from oilseed crops, but can also be generated from lignocellulosic biomass such as straw. However, removing straw affects soil organic carbon (SOC), with potential consequences for the climate impact of the biofuel. This study assessed the climate impacts and energy balance of biodiesel production from straw using oleaginous yeast, with subsequent biogas production from the residues, with particular emphasis on SOC changes over time. It also explored the impact of four different scenarios for returning the lignin fraction of the biomass to soil to mitigate SOC changes. Climate impact was assessed using two methods, global warming potential (GWP) and a time-dependent temperature model (∆T s ) that describes changes in mean global surface temperature as a function of time or absolute temperature change potential (AGTP). RESULTS Straw-derived biodiesel reduced GWP by 33-80% compared with fossil fuels and primary fossil energy use for biodiesel production was 0.33-0.80 MJprim/MJ, depending on the scenario studied. Simulations using the time-dependent temperature model showed that a scenario where all straw fractions were converted to energy carriers and no lignin was returned to soil resulted in the highest avoided climate impact. The SOC changes due to straw removal had a large impact on the results, both when using GWP and the time-dependent temperature model. CONCLUSIONS In a climate perspective, it is preferable to combust straw lignin to produce electricity rather than returning it to the soil if the excess electricity replaces natural gas electricity, according to results from both GWP and time-dependent temperature modelling. Using different methods to assess climate impact did not change the ranking between the scenarios, but the time-dependent temperature model provided information about system behaviour over time that can be important for evaluation of biofuel systems, particularly in relation to climate target deadlines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic Manures and Crop Residues as Fertilizer Substitutes: Impact on Nitrous Oxide Emission, Plant Growth and Grain Yield in Pre-Monsoon Rice Cropping System

It has been previously argued that application of organic residues added in soils has a great impact on soil quality, grain productivity as well as greenhouse gas emissions. Substitution of chemical fertilizers has become a common practice in agricultural systems which consequently affect the greenhouse gas emissions from agricultural fields. To observe the effects of organic manures and crop r...

متن کامل

Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model.

Based on the carbon-nitrogen cycles and greenhouse gas (GHG) mitigation and emission processes related to straw return and burning, a compound greenhouse gas budget model, the "Straw Return and Burning Model" (SRBM), was constructed to estimate the net mitigation potential of straw return to the soil in China. As a full GHG budget model, the SRBM addressed the following five processes: (1) soil...

متن کامل

Biogas, Biodiesel and Bioethanol as Multifunctional Renewable Fuels and Raw Materials

Nowadays the world economy is based mainly on petrol as an energy source and raw material for chemical products. The global economic growth in the past century has led to high energy consumption, mainly from fossil fuels, such as coal, oil, and natural gas. The extensive use of fossil fuels formed and stored underground for millions of years has made impossible for the present vegetation on Ear...

متن کامل

Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We exam...

متن کامل

تأثیر کاربری‌های مختلف اراضی بر تصاعد گازهای گلخانه‌ای

An increase in the emission of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil surface to the atmosphere has been of worldwide concern over the last several decades. Carbon dioxide is recognized as a significant contributor to global warming and climatic change, accounting for 60% of total greenhouse effect. The aim of this research was to dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017